27,436 bytes added
, 04:08, 6 April 2007
[[image:chinafarmland.jpg|250px|thumb|Farmlands in [[Hebei|Hebei province]], [[PRC|China]]. China has the world's largest number of farmers, with over 800 million in 2006, but this number is rapidly declining.]]
[[Image:PaddyandjuteBengal.JPG|right|thumb|250px|Freshly sown saplings of paddy in [[West Bengal]], [[India]]]]
{{portal|Agropedia}}
'''Agriculture''' (a term which encompasses '''farming''' and '''[[ranching]]''') is the process of producing [[food]], [[fodder|feed]], [[fiber]], [[fuel]] and other goods by the systematic raising of plants and animals.
''Agri'' is from [[Latin]] ''ager'', meaning "a field", and ''culture'' is from Latin ''cultura'', meaning "cultivation" in the strict sense of ''[[tillage]] of the soil''. A literal reading of the English word yields: ''tillage of the soil of a field''. In modern usage, the word ''agriculture'' covers all activities essential to food/feed/fiber production, including all techniques for raising and processing [[livestock]]. Agriculture is also short for the study of the practice of agriculture—more formally known as [[agricultural science]].
The [[history of agriculture]] is a major element of [[history of the world|human history]], as agricultural progress has been a crucial factor in worldwide [[social change|socio-economic change]], including the specialization of human activity: when farmers became capable of producing food beyond the needs of their own families, others in the [[tribe]]/[[nation]]/[[empire]] were freed to devote themselves to activities other than food acquisition.
42% of the world's laborers are employed in agriculture, making it by far the most common [[occupation]]. However, agricultural production accounts for less than 5% of the [[Gross world product|Gross World Product]] (an aggregate of all [[Gross Domestic Product]]s).<ref>{{cite web |url=https://www.cia.gov/cia/publications/factbook/geos/xx.html#Econ |title=https://www.cia.gov/cia/publications/factbook/geos/xx.html#Econ |accessdate= |format= |work= }}</ref>
==Overview==
The term "farming" covers a wide spectrum of agricultural production work. At one end of this spectrum is the [[subsistence agriculture|subsistence farmer]], who farms a small area with limited resource inputs, and produces only enough [[food]] to meet the needs of his/her family. At the other end is commercial [[intensive agriculture]], including [[industrial agriculture]]. Such farming involves large fields and/or numbers of animals, large resource inputs (pesticides, fertilizers, etc.), and a high level of [[Mechanised agriculture|mechanization]]. These operations generally attempt to maximize financial income from [[produce]] or [[livestock]].
Modern agriculture extends well beyond the traditional production of food for humans and [[fodder|animal feeds]]. Other agricultural production goods include [[flower|cut flowers]], ornamental and [[Nursery (horticulture)|nursery plants]], tropical fish and birds for the pet trade, [[timber]], [[fertilizer]]s, [[animal hides]], [[leather]], industrial chemicals ([[starch]], [[sugar]], [[ethanol]], [[alcohol]]s and [[plastic]]s), [[fiber]]s ([[cotton]], [[wool]], [[hemp]], and [[flax]]), fuels ([[methane]] from [[biomass]], [[biodiesel]]) and both legal and illegal drugs ([[biopharmaceutical]]s, [[tobacco]], [[cannabis (drug)|marijuana]], [[opium]], [[cocaine]]).
The twentieth century saw massive changes in agricultural practice, particularly in [[agricultural chemistry]]. Agricultural chemistry includes the application of chemical fertilizer, chemical insecticides (see [[pest control]]), and chemical [[fungicides]], soil makeup, analysis of agricultural products, and nutritional needs of farm animals. Beginning in the [[Western world]], the [[green revolution]] spread many of these changes to farms throughout the world, with varying success.
Other recent changes in agriculture include [[hydroponics]], [[plant breeding]], hybridization, [[genetic modification|gene manipulation]], better management of soil nutrients, and improved [[weed control]]. [[GMO|Genetic engineering]] has yielded crops which have capabilities beyond those of naturally occurring plants, such as higher yields and disease resistance. Modified seeds germinate faster, and thus can be grown in an extended growing area. Genetic engineering of plants has proven controversial, particularly in the case of [[Roundup|herbicide]]-resistant plants.
Engineers may develop plans for [[irrigation]], [[drainage]], [[conservation ethic|conservation]] and sanitary engineering, particularly important in normally arid areas which rely upon constant irrigation, and on large scale farms.
The packing, processing, and marketing of agricultural products are closely related activities also influenced by science. Methods of quick-freezing and dehydration have increased the markets for farm products (see [[food preservation]] and [[meat packing industry]]).
Animals, including horses, mules, oxen, camels, llamas, alpacas, and dogs, are often used to cultivate [[field (agriculture)|fields]], harvest [[crop (agriculture)|crops]] and transport farm products to markets. [[Animal husbandry]] not only refers to the breeding and raising animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis but the breeding and care of species for companionship. Mechanization has enormously increased farm efficiency and productivity in Western agriculture (see [[agricultural machinery]]).
Airplanes, helicopters, trucks, tractors, and combines are used in Western agriculture for seeding, spraying operations for insect and disease control, harvesting, [[aerial topdressing]] and transporting perishable products. Radio and television disseminate vital weather reports and other information such as market reports that concern farmers. Computers have become an essential tool for farm management.
[[Image:Farming-on-Indonesia.jpg|thumb|250px|right|Farming, ploughing rice paddy, in [[Indonesia]].]]
According to the [[National Academy of Engineering]] in the [[United States]], agricultural mechanization is one of the 20 greatest engineering achievements of the 20th century. Early in the century, it took one American farmer to produce food for 2.5 people. Today, due to advances in agricultural technology, a single farmer can feed over 130 people.<ref>{{cite web |url=http://www.greatachievements.org/greatachievements/ga_7_2.html |title=http://www.greatachievements.org/greatachievements/ga_7_2.html |accessdate= |format= |work= }}</ref> This comes at a cost, however. A large energy input, often from [[fossil fuel]], are required to maintain such high levels of output.
In recent years, some aspects of intensive [[industrial agriculture]] have been the subject of increasing discussion. The widening [[sphere of influence]] held by large seed and chemical companies, meat packers and food processors has been a source of concern both within the farming community and for the general public. Another issue is the type of feed given to some animals that can cause [[bovine spongiform encephalopathy]] in cattle. There has also been concern because of the disastrous effect that intensive agriculture has on the environment. In the US, for example, fertilizer has been running off into the Mississippi for years and has caused a [[dead zone (ecology)|dead spot]] in the Gulf of Mexico, where the Mississippi empties. Intensive agriculture also depletes the fertility of the land over time, potentially leading to [[desertification]].
[[Image:Fields of gold.jpg|thumb|250px|A field of ripening [[barley]]]]
The patent protection given to companies that develop new types of seed using [[genetic engineering]] has allowed seed to be licensed to farmers in much the same way that computer software is licensed to users. This has changed the balance of power in favor of the seed companies, allowing them to dictate terms and conditions previously unheard of. The [[India]]n activist and scientist [[Vandana Shiva]] argues that these companies are guilty of [[biopiracy]].
[[Soil]] [[conservation
ethic|conservation]] and [[nutrient management]] have been important concerns since the 1950s, with the most advanced farmers taking a [[stewardship]] role with the land they use. However, increasing contamination of waterways and wetlands by nutrients like [[nitrogen]] and [[phosphorus]] are concerns that can only be addressed by "enlightenment" of farmers and/or far stricter [[law enforcement]] in many countries.
Increasing consumer awareness of agricultural issues has led to the rise of [[community-supported agriculture]], [[local food movement]], "[[Slow Food]]", and commercial [[organic farming]].
==History==
{{main|History of agriculture}}
[[Image:Ancient egyptian farmer.gif|thumb|230px|Ancient Egyptian farmer]]
===Ancient Origins===
Developed independently by geographically distant populations, systematic agriculture first appeared in [[Southwest Asia]] in the [[Fertile Crescent]], particularly in the areas now called [[Syria]] and southern [[Iraq]]. Around 9500 BC, proto-farmers began to select and cultivate food plants with desired characteristics. Though there is evidence of earlier sporadic use of wild cereals, it was not until after 9500 BC that the eight so-called [[Neolithic founder crops|founder crops]] of agriculture appear: first [[emmer wheat|emmer]] and [[einkorn wheat]], then hulled [[barley]], [[pea]]s, [[lentil]]s, [[bitter vetch]], [[chick pea]]s and [[flax]].
By 7000 BC, small-scale agriculture reached [[Egypt]]. From 7000 BC the [[Indian subcontinent]] saw farming of [[wheat]] and [[barley]], attested by archaeological excavation at [[Mehrgarh]] in [[Balochistan]]. By 6000 BC, mid-scale farming was entrenched on the banks of the Nile River. About this time, agriculture was developed independently in the Far East, with [[rice]], rather than wheat, as the primary crop. [[China|Chinese]] and [[Indonesia|Indonesian]] farmers went on to domesticate [[mung bean|mung]], [[soy]], [[Azuki bean|azuki]] and [[taro]]. To complement these new sources of [[carbohydrates]], highly organized net [[fishing]] of rivers, lakes and ocean shores in these areas brought in great volumes of essential [[protein]].
By 5000 BC, the [[Sumer|Sumerians]] had developed core agricultural techniques including large scale intensive cultivation of land, [[mono-cropping]], organized [[irrigation]], and use of a specialized [[labour (economics)|labour]] force, particularly along the waterway now known as the [[Shatt al-Arab]], from its [[Persian Gulf]] delta to the confluence of the [[Tigris]] and [[Euphrates]]. Domestication of wild [[aurochs]] and [[mouflon]] into [[cattle]] and [[sheep]], respectively, ushered in the large-scale use of animals for food/fiber and as beasts of burden. The [[shepherd]] joined the farmer as an essential provider for [[sedentary]] and semi-[[nomadic]] societies.
[[Maize]], [[manioc]], and [[arrowroot]] were first domesticated in the Americas as far back as 5300 BC.[http://www.ucalgary.ca/news/feb2007/early-farming/] The [[potato]], [[tomato]], [[pepper]], [[Squash (fruit)|squash]], several varieties of [[legume|bean]], [[Canna (plant)|Canna]], [[tobacco]] and several other plants were also developed in the New World, as was extensive [[terrace|terracing]] of steep hillsides in much of [[Andes|Andean]] [[South America]].
In later years, the [[Ancient Greece|Greeks]] and [[Roman agriculture|Romans]] built on techniques pioneered by the Sumerians but made few fundamentally new advances. The Greeks and [[Macedonia]]ns struggled with very poor soils, yet managed to become dominant societies for years. The Romans were noted for an emphasis on the cultivation of crops for [[trade]].
[[Image:ClaySumerianSickle.jpg|thumb|right|230px|[[Sumer]]ian Harvester's sickle, 3000 BCE. Baked clay. [[Field Museum]].]]
===Agriculture in the Middle Ages===
During the Middle Ages, Muslim farmers in North Africa and the Near East developed and disseminated agricultural technologies including irrigation systems based on [[hydraulic]] and [[hydrostatic]] principles, the use of machines such as [[Water wheel|norias]], and the use of water raising machines, dams, and reservoirs. Muslims also wrote location-specific Farming manuals, and were instrumental in the wider adoption of crops including sugar cane, rice, citrus fruit, apricots, cotton, artichokes, aubergines, and saffron. Muslims also brought lemons, oranges, cotton, almonds, figs and sub-tropical crops such as bananas to Spain.
===Renaissance to Present Day===
[[Image:Agriculture (Plowing) CNE-v1-p58-H.jpg|left|thumb|250px|A [[tractor]] ploughing an [[alfalfa]] field]]
The invention of a [[three field system]] of crop rotation during the [[Middle Ages]], and the importation of the Chinese-invented [[moldboard]] plow, vastly improved agricultural efficiency.
After 1492, a global exchange of previously local crops and livestock breeds occurred. Key crops involved in this exchange included the [[tomato]], [[maize]], [[potato]], [[cocoa]], [[tobacco]], and [[coffee]].
By the early 1800s, agricultural practices, particularly careful selection of hardy strains and cultivars, had so improved that yield per land unit was many times that seen in the Middle Ages. With the rapid rise of [[mechanised agriculture|mechanization]] in the late 19th and 20th centuries, particularly in the form of the [[tractor]], farming tasks could be done with a speed and on a scale previously impossible. These advances have led to efficiencies enabling certain modern farms in the United States, [[Argentina]], [[Israel]], [[Germany]], and a few other nations to output volumes of high quality produce per land unit at what may be the practical limit.
==Crops==
===World production of major crops in 2004===
Specific crops are cultivated in distinct [[growing region]]s throughout the world. In millions of metric tons, based on [[Food and Agriculture Organization|FAO]] estimates.
{| class="wikitable" align=left
! colspan=2|Top agricultural products, by crop types <br>(million metric tons) 2004 data
|-
| [[Cereal]]s || align="right" | 2,264
|-
| [[Vegetable]]s and [[melon]]s || align="right" | 866
|-
| [[Root]]s and [[Tuber]]s || align="right" | 715
|-
| [[Milk]] || align="right" | 619
|-
| [[Fruit]] || align="right" | 503
|-
| [[Meat]] || align="right" | 259
|-
| [[Vegetable oil|Oilcrops]] || align="right" | 133
|-
| [[Fish]] (2001 estimate) || align="right" | 130
|-
| [[Egg (food)|Eggs]] || align="right" | 63
|-
| [[Pulse (legume)|Pulses]] || align="right" | 60
|-
| [[Fiber crop|Vegetable Fiber]] || align="right" | 30
|-
|colspan=2|''Source: <br>[[Food and Agriculture Organization]] (FAO)''<ref>{{cite web |url=http://faostat.fao.org/ |title=http://faostat.fao.org/ |accessdate= |format= |work= }}</ref>
|}
{| class="wikitable" align=right
! colspan=2|Top agricultural products, by individual crops <br>(million metric tons) 2004 data
|-
| [[Sugar Cane]] || align="right" | 1,324
|-
| [[Maize]] || align="right" | 721
|-
| [[Wheat]] || align="right" | 627
|-
| [[Rice]] || align="right" | 605
|-
| [[Potato]]es || align="right" | 328
|-
| [[Sugar Beet]] || align="right" | 249
|-
| [[Soybean]] || align="right" | 204
|-
| [[Oil Palm]] Fruit || align="right" | 162
|-
| [[Barley]] || align="right" | 154
|-
| [[Tomato]] || align="right" | 120
|-
|colspan=2|''Source: <br>[[Food and Agriculture Organization]] (FAO)''<ref>{{cite web |url=http://faostat.fao.org/ |title=http://faostat.fao.org/ |accessdate= |format= |work= }}</ref>
|}
<br clear="all">
=== Crop improvement ===
{{main|Plant breeding}}
[[Image:Ueberladewagen.jpg|thumb|230px|[[Tractor]] and [[Chaser Bin]]]]
[[Image:Cropscientist.jpg|right|thumb|230px|An agricultural scientist records corn growth]]
[[Image:Bird netting.jpg|thumb|230px|Netting protecting wine grapes from birds]]
Domestication of plants is done in order to increase yield, improve disease resistance and drought tolerance, ease harvest and to improve the taste and [[nutrition]]al value and many other characteristics. Centuries of careful selection and breeding have had enormous effects on the characteristics of crop plants. Plant breeders use greenhouses and other
techniques to get as many as three generations of plants per year so that they can make improvements all the more quickly.
Plant selection and breeding in the 1920s and 1930s improved [[pasture]] (grasses and clover) in New Zealand. Extensive radiation mutagenesis efforts (i.e. primitive genetic engineering) during the 1950s produced the modern commercial varieties of grains such as wheat, corn and barley.{{Fact|date=February 2007}}
For example, average yields of corn ([[maize]]) in the USA have increased from around 2.5 tons per hectare (t/ha) (40 bushels per acre) in 1900 to about 9.4 t/ha (150 bushels per acre) in 2001. Similarly, worldwide average wheat yields have increased from less than 1 t/ha in 1900 to more than 2.5 t/ha in 1990. [[South America]]n average wheat yields are around 2 t/ha, [[Africa]]n under 1 t/ha, [[Egypt]] and Arabia up to 3.5 to 4 t/ha with irrigation. In contrast, the average wheat yield in countries such as [[France]] is over 8 t/ha. Variation in yields are due mainly to variation in climate, genetics, and the use or non-use of intensive farming techniques (use of fertilizers, chemical [[pest control]], growth control to avoid lodging).{{Fact|date=February 2007}} [Conversion note: 1 bushel of wheat = 60 pounds (lb) ≈ 27.215 kg. 1 bushel of corn = 56 pounds ≈ 25.401 kg] <!-- this should be a footnote -->
In industrialized agriculture, crop "improvement" has often reduced nutritional and other qualities of food plants to serve the interests of producers. After mechanical tomato-harvesters were developed in the early 1960s, agricultural scientists bred tomatoes that were harder and less nutritious (Friedland and Barton 1975). In fact, a major longitudinal study of nutrient levels in numerous [[vegetables]] showed significant declines in the last 50 years; garden vegetables in the U.S. today contain on average 38 percent less vitamin B2 and 15 percent less vitamin C (Davis and Riordan 2004).
Very recently, [[genetic engineering]] has begun to be employed in some parts of the world to speed up the selection and breeding process. The most widely used modification is a [[Roundup|herbicide]] resistance gene that allows plants to tolerate exposure to glyphosate, which is used to control weeds in the crop. A less frequently used but more controversial modification causes the plant to produce a toxin to reduce damage from insects (c.f. [[Transgenic maize|Starlink]]).
The same effects are occuring to this day. The only changes made are presented in the technology to day. There are specialty producers who raise less common types of livestock or plants.
[[Aquaculture]], the farming of [[fish]], [[shrimp]], and [[algae]], is closely associated with agriculture.
[[Beekeeping|Apiculture]], the culture of bees, traditionally for [[honey]]—increasingly for crop [[pollination]].
:''See also'' : [[botany]], [[List of domesticated plants]], [[List of vegetables]], [[List of herbs]], [[List of fruit]]
==Livestock==
Production of food and fiber for human sustenance and use may be pastoral or nomadic or intensive and industrial. The growing of crops for animal consumption traditionally has been a mainstay of the [[family farm]] and other forms of mixed agriculture. See [[Livestock]].
==Environmental problems==
[[Image:Soil erosion1.jpg|thumb|250px|Severe [[soil erosion]] in a wheat field near [[Washington State University]], US (c.2005)]]Agriculture may often cause environmental problems because it changes natural environments and produces harmful by-products. Some of the negative effects are:
* Surplus of [[nitrogen]] and [[phosphorus]] in [[river]]s and [[lake]]s
* Detrimental effects of [[herbicide]]s, [[fungicide]]s, [[insecticide]]s, and other [[biocide]]s
* Conversion of natural [[ecosystem]]s of all types into [[arable land]]
* Consolidation of diverse [[biomass]] into a few species
* [[Soil erosion]]
* Depletion of [[minerals]] in the [[soil]]
* [[Particulate matter]], including [[ammonia]] and [[ammonium]] off-gasing from animal waste contributing to [[air pollution]]
* [[Weed Science]] - [[feral]] plants and animals
* Odor from agricultural [[waste]]
* [[Soil salination]]
Agriculture is cited as a significant adverse impact to biodiversity in many nations' [[Biodiversity Action Plan]]s, due to reduction of forests and other [[Habitat (ecology)|habitat]]s when new lands are converted to farming. Some critics also include agriculture as a cause of [[global warming|current global climate change]].
According to the United Nations, the livestock sector (primarily cows, chickens, and pigs) emerges as one of the top two or three most significant contributors to our most serious environmental problems, at every scale from local to global. It is one of the largest sources of greenhouse gases - responsible for 18% of the world’s greenhouse gas emissions as measured in CO<sup>2</sup> equivalents. By comparison, all transportation emits 13.5% of the CO<sup>2</sup>. It produces 65% of human-related nitrous oxide (which has 296 times the global warming potential of CO2) and 37% of all human-induced methane (which is 23 times as warming as CO2). It also generates 64% of the ammonia, which contributes to acid rain and acidification of ecosystems [http://www.virtualcentre.org/en/library/key_pub/longshad/A0701E00.htm].
==Policy==
[[Agricultural policy]] focuses on the goals and methods of agricultural production. At the policy level, common goals of agriculture include:
*[[Food safety]]: Ensuring that the food supply is free of contamination.
*[[Food security]]: Ensuring that the food supply meets the population's needs.
*[[Food quality]]: Ensuring that the food supply is of a consistent and known quality.
* Conservation
* Environmental impact
* Economic stability
[[Image:Crops Kansas AST 20010624.jpg|thumb|300px|Satellite image of circular crop fields characteristic of [[center pivot irrigation]] in [[Haskell County, Kansas]] in late June 2001. Healthy, growing crops are green. [[maize|Corn]] is growing leafy stalks, but [[Sorghum]], which resembles corn, grows more slowly and is much smaller and therefore paler. [[Wheat]] is a brilliant gold as harvest occurs in June. Brown fields have been recently harvested and plowed under or lie [[fallow]] for the year.]]
:
==References==
<div class="references-small">
*Artz, F. B, (1980), ‘The Mind of the Middle Ages’; Third edition revised; The University of Chicago Press,
*Bolens, L. (1997), `Agriculture’ in Encyclopaedia of the history of Science, technology, and Medicine in Non Western Cultures, Editor: Helaine Selin; Kluwer Academic Publishers. Dordrecht/Boston/London, pp 20-2
*Collinson, M. (editor): ''A History of Farming Systems Research''. CABI Publishing, 2000. ISBN 0-85199-405-9
*Crosby, Alfred W.: ''The Columbian Exchange : Biological and Cultural Consequences of 1492''. Praeger Publishers, 2003 (30th Anniversary Edition). ISBN 0-275-98073-1
*Davis, Donald R., and Hugh D. Riordan (2004) Changes in USDA Food Composition Data for 43 Garden Crops, 1950 to 1999. Journal of the American College of Nutrition, Vol. 23, No. 6, 669-682.
*Friedland, William H. and Amy Barton (1975) Destalking the Wily Tomato: A Case Study of Social Consequences in California Agricultural Research. Univ. California at Sta. Cruz, Research Monograph 15.
*Saltini A.''Storia delle scienze agrarie'', 4 vols, Bologna 1984-89, ISBN 88-206-2412-5, ISBN 88-206-2413-3, ISBN 88-206-2414-1, ISBN 88-206-2414-X
*Watson, A.M (1974), ‘The Arab agricultural revolution and its diffusion’, in The Journal of Economic History, 34,
*Watson, A.M (1983), ‘ Agricultural Innovation in the Early Islamic World’, Cambridge University Press
*Wells, Spencer: ''The Journey of Man : A Genetic Odyssey''. Princeton University Press, 2003. ISBN 0-691-11532-X
*Wickens, G.M.(1976), ‘What the West borrowed from the Middle east’, in Introduction to Islamic Civilisation, edited by R.M. Savory, Cambridge University Press, Cambridge
</div>
==Citations==
<references/>
==See also==
{{commonscat|Agriculture}}
: ''Main lists: [[List of basic agriculture topics]] and [[List of agriculture topics]]''
* [[Aeroponics]]
* [[Agricultural systems]]
* [[Agrocenter]]
* [[electroculture]]
* [[Geoponic]]
* [[Horticulture]]
* [[Hydroponic]]
* [[Industrial agriculture]]
* [[Integrated Pest Management]] ([[Integrated Pest Management|IPM]])
* [[List of domesticated animals]]
* [[List of subsistence techniques]]
* [[List of countries by GDP sector composition|List of countries by agricultural output]]
* [[List of sustainable agriculture topics]]
* [[Timeline of agriculture and food technology]].
* [[Organic farming]]
* [[Permaculture]]
[[Image:Coffee Plantation.jpg|thumb|600px|center|Coffee Plantation in [[São João do Manhuaçu]] City - [[Minas Gerais]] State - [[Brazil]].]]
==External links==
{{wikibooks|Genes, Technology and Policy}}
*[http://nal.usda.gov/ The National Agricultural Library (NAL)]- The most comprehensive agricultural library in the world.
*[http://www.ukagriculture.com/ UKAgriculture.com] - Advance the education of the public in all aspects of agriculture, the countryside and the rural economy
*[http://www.asabe.org/ American Society of Agricultural and Biological Engineers]
* [http://www.iita.org International Institute of Tropical Agriculture (IITA)]
* [http://www.fao.org www.fao.org] — Food and Agriculture Organization of the United Nations World Agricultural Information Centre
** [http://www.fao.org/waicent/portal/statistics_en.asp www.fao.org] — The UN Statistical Databases
** [http://www.fao.org/faostat www.fao.org/faostat] — The FAOSTAT Statistical Databases
** [http://www.fao.org/es/ess www.fao.org/es/ess] — The FAO Statistics Division
** [http://www.fao.org/ag/ FAO Agriculture Department] and its [http://www.fao.org/docrep/006/y5160e/y5160e00.HTM State of Food and Agriculture 2003-2004] with a focus on the impact of biotechnology
**[http://www.greenfacts.org/gmo/index.htm GM Crops in Agriculture] – A summary for non-specialists of the above FAO report by [[GreenFacts]].
* {{dmoz|Science/Environment/Agriculture/ |Agriculture}}
*[http://www.farmtag.com Farm Based Social Bookmarking Site]
* [http://imperium.lenin.ru/~kaledin/tmp/agricltr.txt ''Agriculture: Demon Engine of Civilization''] by John Zerzan
*[http://www.agnic.org/ Agriculture Network Information Center]
*[http://www.merid.org/fs-agbiotech/ Food Security and Ag-Biotech News]
*[http://www.ers.usda.gov/StateFacts/ USDA, Economic Research Service]
*[http://www.farminguk.com/ FarmingUK] UK Agriculture national news and regional news
*[http://osha.europa.eu/sector/agriculture Agriculture section [[European Agency for Safety and Health at Work]] (OSHA)]
*[http://www.agrivels.com Agriculture consultants]
* [http://organicschmorganic.blogspot.com/ OrganicSchmorganic] Debunking the myth of organic in favor of local, ecological agriculture
*[http://www.marliko.blogfa.com Agriculture]
* http://www.agrowknow.org/ AgrowKnowledge - the National Center for Agriscience and Technology education